If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+8w=52
We move all terms to the left:
2w^2+8w-(52)=0
a = 2; b = 8; c = -52;
Δ = b2-4ac
Δ = 82-4·2·(-52)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{30}}{2*2}=\frac{-8-4\sqrt{30}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{30}}{2*2}=\frac{-8+4\sqrt{30}}{4} $
| 5(2x-6)-5=5(x-2)-15 | | 3n+10=20 | | 5x=-8(55) | | 11=5-y12 | | .7x=28900 | | 18=a+5+9 | | 20x-2=-4x+11x | | 43/10+k=67/20 | | 3+p/8=27 | | 7-7p=-14 | | 26•14=n | | 6x+50=134 | | 6+6m=-84 | | 3x-8=-x+20 | | 26+n=14 | | 168=7p | | 14*n=26 | | 27=11x+6 | | 2(k+3)=2(4K+5) | | 2(k+3)=2(4K+5$ | | 6x+(2/3)x=180 | | 2/5=(s | | 6x-4=4x-26 | | 4(2x–1)=-3x+32 | | 150=2w+2(3+5w) | | 6(2x+4)=-12+6x | | 1/3(3w-6)=1/2(2w-4) | | -0.6+-0.4y=-1y+0 | | 3m/m^2-6m=5 | | n-5+17=25 | | 8m-5=12 | | w/4-16=13 |